Evolving Reinforcement Learning Algorithms

Motivation
- Desire general purpose RL algorithms without manual effort.
- Problem: Meta-learn RL algorithms that generalize.

Overview
- **Insight:** RL algorithm as a computational graph
- **Method:** Evolve population of graphs by mutating, training, and evaluating RL agents
- **Result:** Learn new algorithms which generalize to unseen environments

Prior Work
- Genetic Programming
 - Mostly applied to SL
- Meta-learning in RL
 - Adaptation: Finn & Levine 2018
 - Not domain agnostic
 - Learning RL Algorithms
 - Metagradients: Krish et al. 2020, Oh et al. 2020
- Mostly applied to SL

RL Algorithm as a Computational Graph
- Computational graph computes loss function for agent to optimize.

Learned Algorithms
- **DQNClipped** as constrained optimization
 \[L_{DQN} = 0.1 \times \mathbb{E}[Q(s, a)] + \beta \]
- **DQNReg** as entropy regularization
 \[L_{DQN} = (Q(s, a) - (r_t + \gamma \max_{a' \neq a} Q(s', a')))^2 \]

Results
- Outperform baselines on train envs.
- Generalize to unseen environments.
- Benefits on Atari even though training envs. were non-image based

Future Work
- Extensions to actor critic, offline RL, representation learning
- Analyze and incorporate learned algorithms into existing ones
- Machine assisted algorithm development