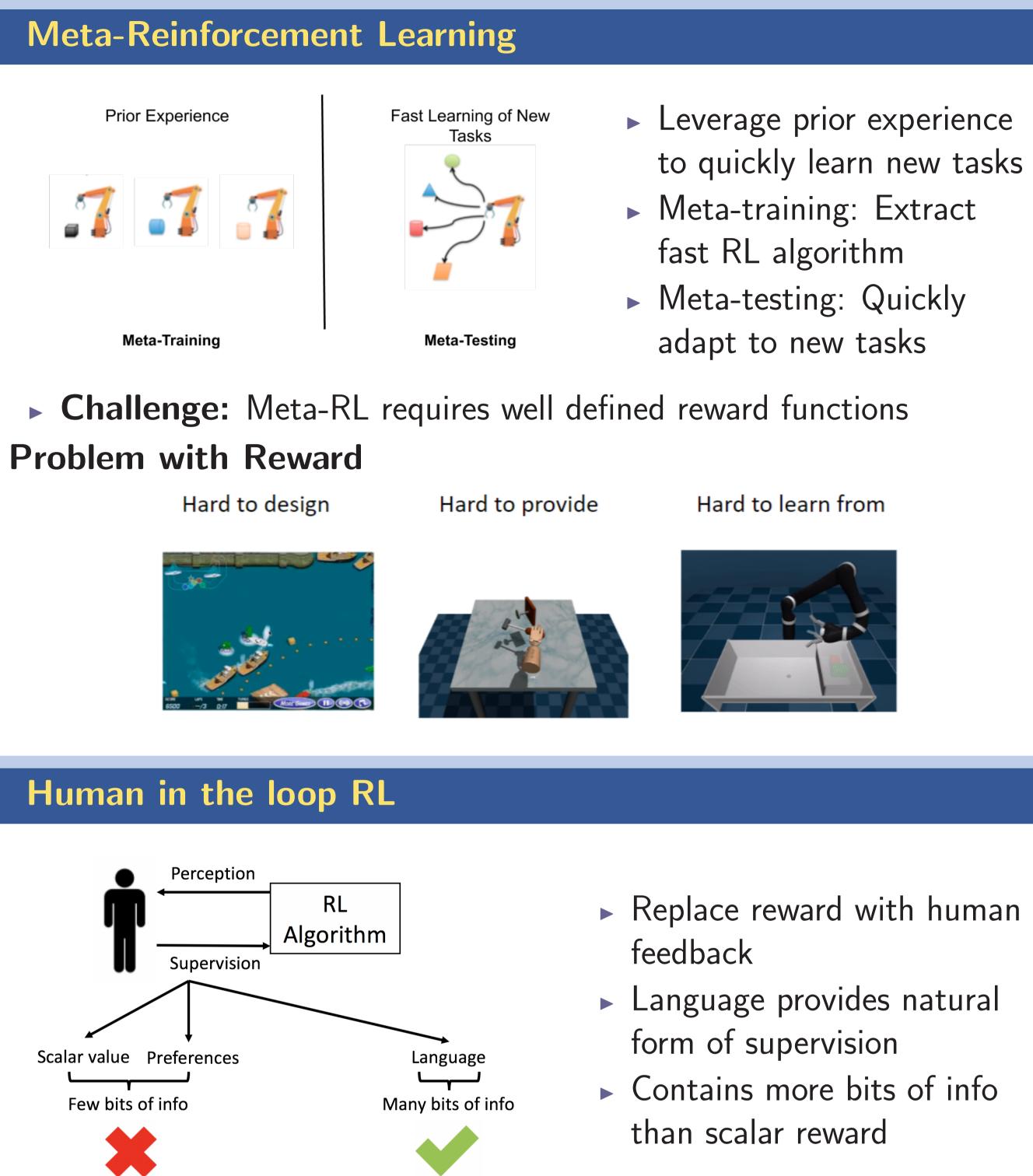
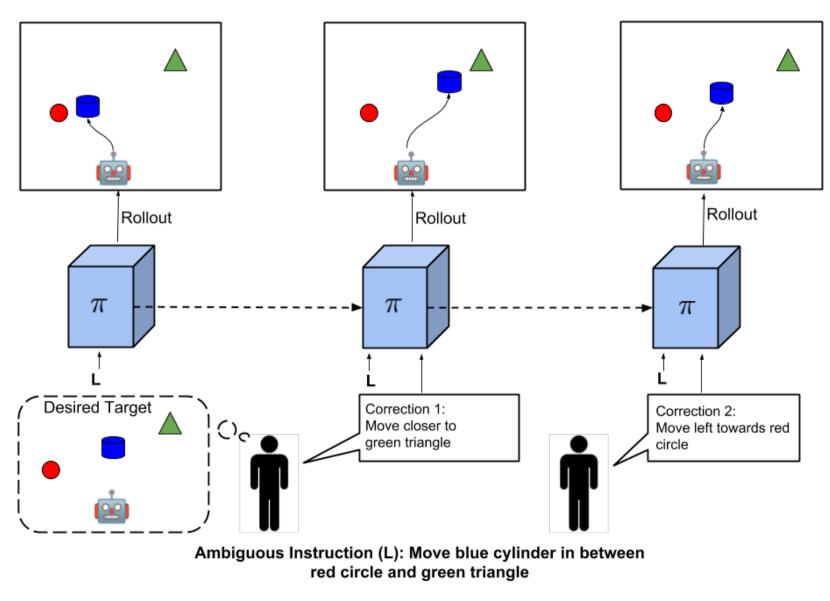
Guiding Policies with Language via Meta-Learning John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John DeNero, Pieter Abbeel, Sergey Levine University of California, Berkeley



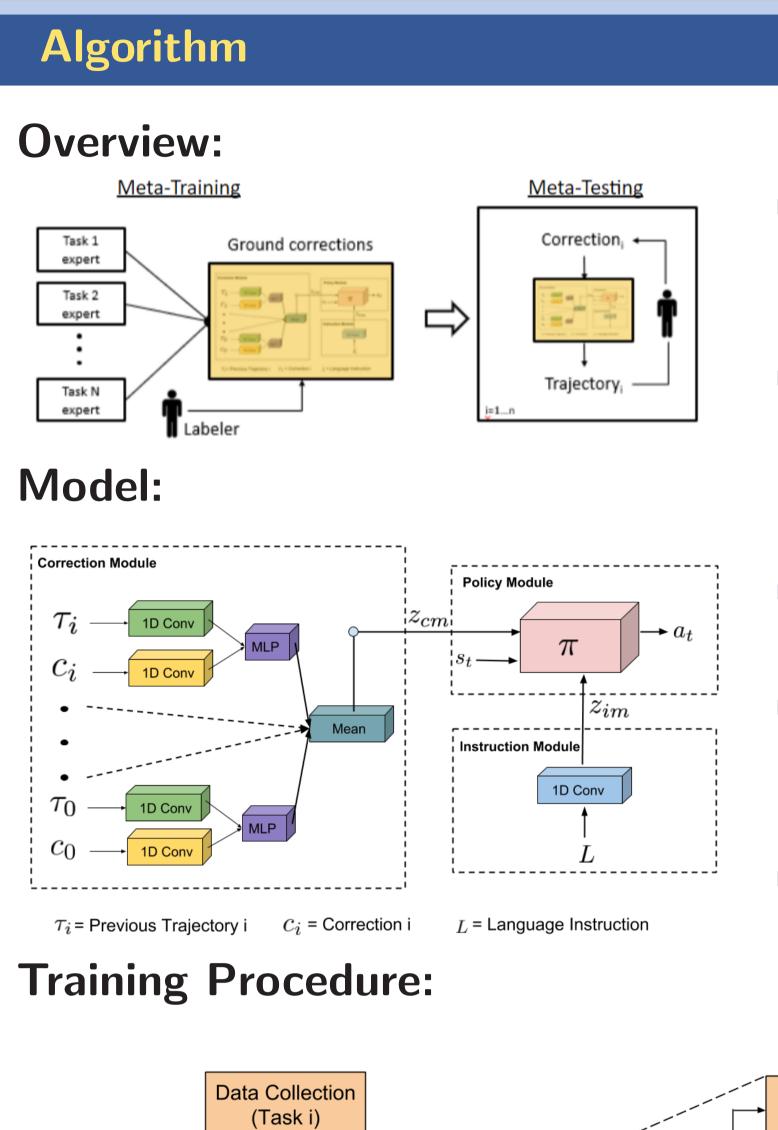
Framework

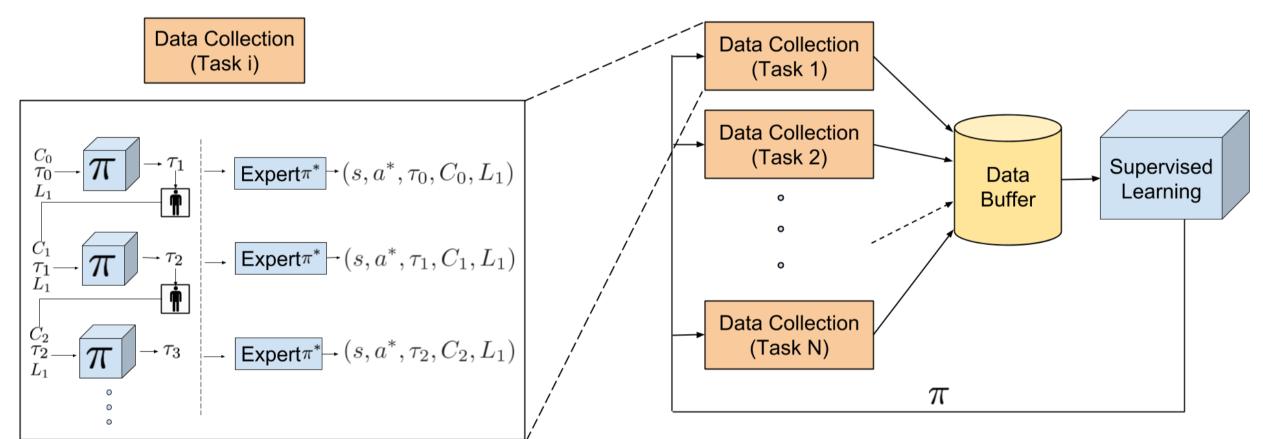
Problem: Solve new tasks quickly via interactive language corrections given prior experience on related tasks.



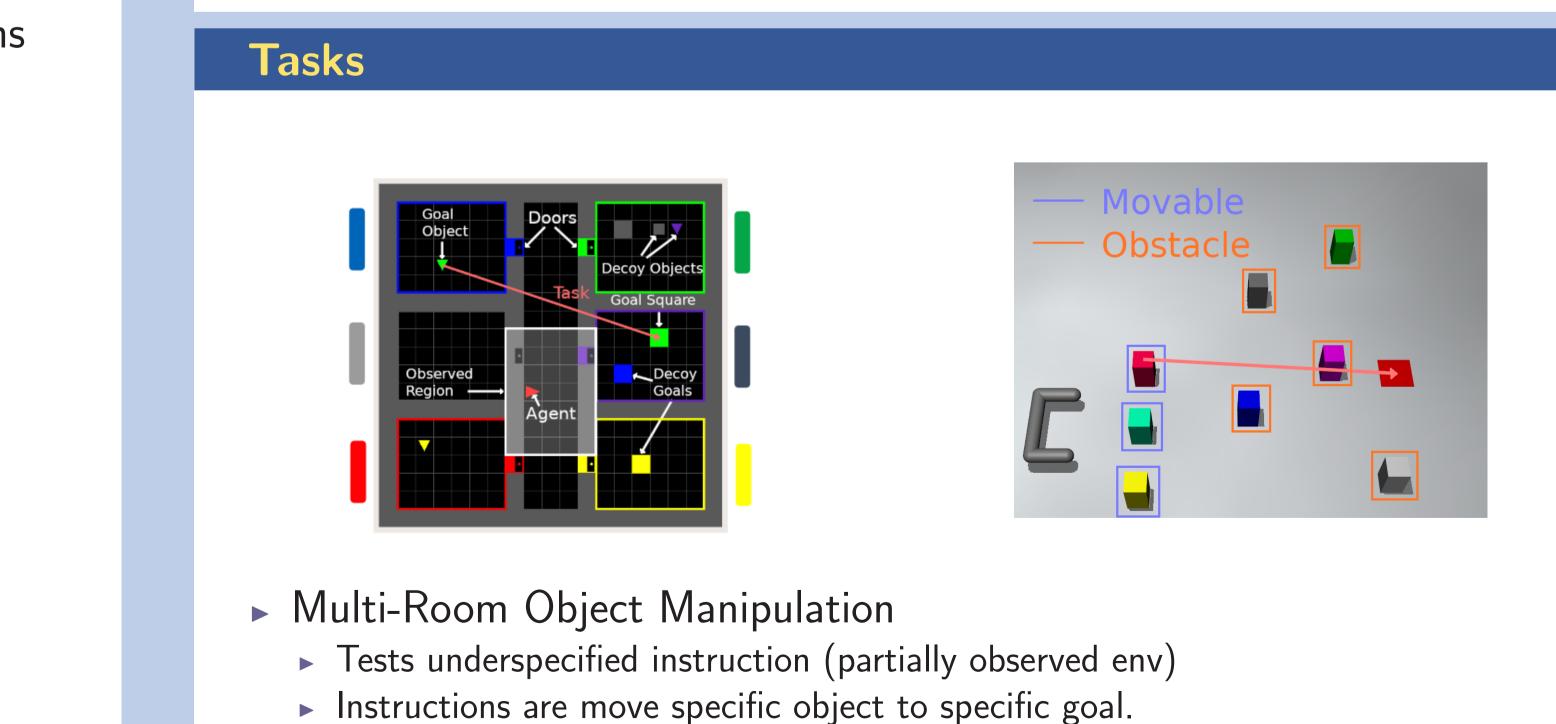
Problem Setup

- A human guides the agent with language corrections
- Agent incorporates correction to move closer to the solution
- Ground language using multi-task, meta-learning framework





- Use DAgger like procedure conditioned on corrections
- Assume access to expert policies and human labeler during training

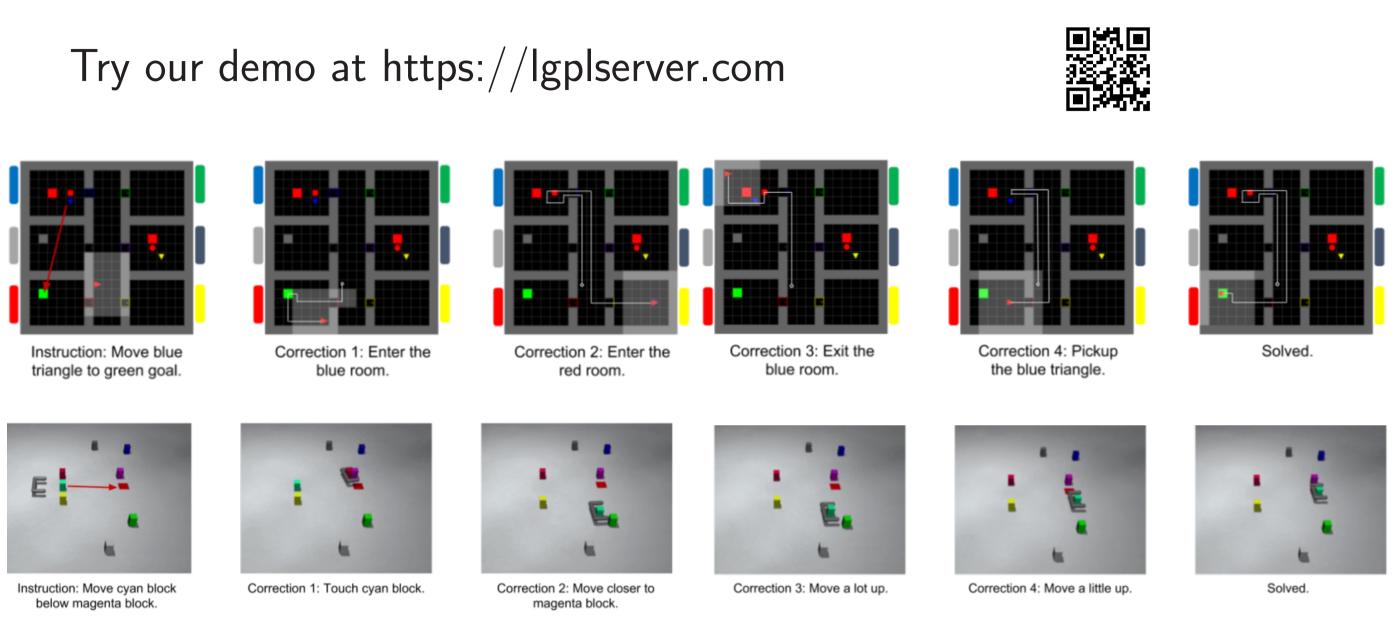


- Corrections guide agent to room locations of object and goal
- Robotic Object Relocation
- Tests ambiguous instruction (human has imprecise goal)
- Instructions are "Move red block close to magenta block"
- Corrections guide the object to correct location

- Ground language corrections during training using expert policies
- Solve test tasks with only a few corrections
- Map corrections to changes in agent's behavior
- Incorporate previous
- trajectories and corrections of them
- Process language instruction

Experimental Results

Example rollouts



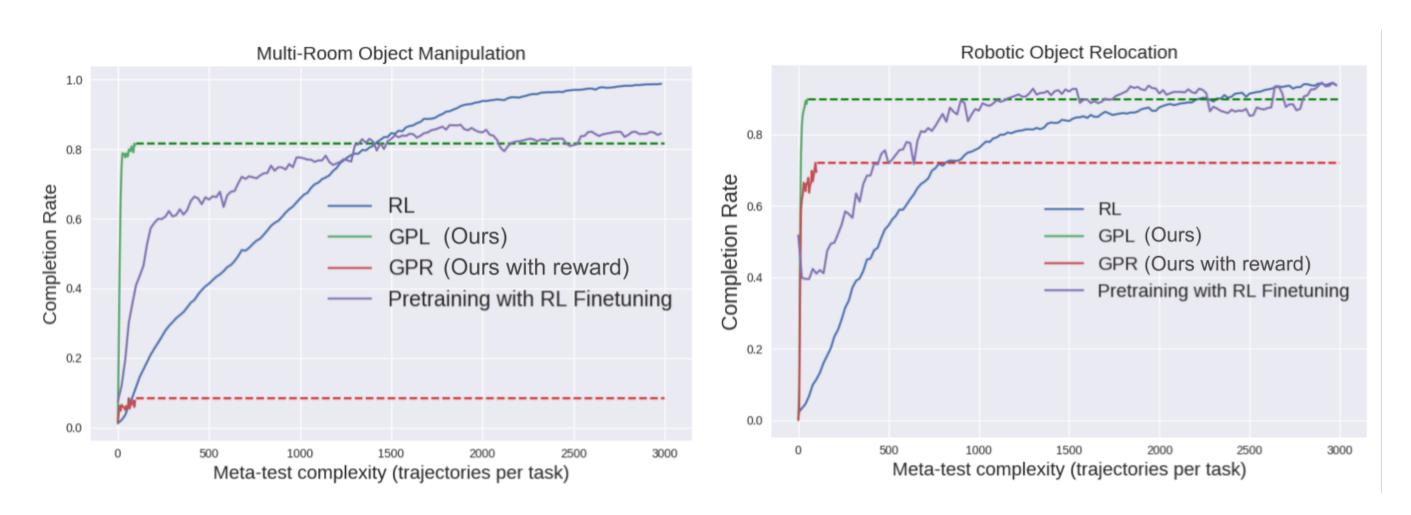
Results

Env	Instruction	Full Info	MIVOA (Instr.)	MIVOA (Full Info)	C 0	C ₁	C ₂	C 3	C 4	C 5
Multi-room	0.075	0.73	0.067	0.63	0.066	0.46	0.65	0.73	0.77	0.82
Obj Relocation	0.64	0.96	0.65	-	0.65	0.80	0.84	0.85	0.88	0.90
					-					

lable: Mean completion rates on test tasks. c_i denotes agent has received i corrections

- method (right)

Meta-test complexity



- and corrections without using reward
- more information

Ablations

0.066 0.059					
0 050	0 15	0 60	0 70	0 70	$\sim \neg \sim$
0.077	0.44	0.62	0.70	0.76	0.77
0.067	0.49	0.44	0.58	0.59	0.63
().067	0.067 0.49	0.067 0.49 0.44	0.067 0.49 0.44 0.58	0.067 0.49 0.44 0.58 0.59

Table: Ablation Experiments analyzing the importance of various components of the model.

Mean completion rates on test tasks for baseline methods (left) and our

► Full info gets all information need to solve task as well as instructions MIVOA is instruction following baseline from (Misra et al. 2017)

► GPL (ours) achieves high test task completion with just 5 trajectories

RL takes many more test trajectories and requires test reward

GPR replaces language with reward, demonstrating language conveys