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» Reason in terms of abstract low-level skills instead of single actions.
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» High level abstraction enables temporally extended planning.
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» Representations for lower-level skills

» Previous: Discrete options: Sutton et al., 1999, Bacon et al., 2017 Supervised Learning KL Regularization
» Ours— Continuous representation of skills E% log pog,, (7 | E))]J_ Dk, (%(E | 7) || p(2)) +
» Learning lower-level skills ‘ \ [T 1
. . ) 0 —r H 7
» Previous: Hand specified objectives: Florensa et al. 2017; Sutton et al., 1999 [ id:09pD (le)[ gpebﬂ( ‘ )] + (pﬂpﬂ( ‘ )) 0 - - - oo - - - .
» Ours— Generic objectives. Maximum Entropy RL | | ' ' | | | ' 167

» Planning over long time-horizons

» Previous: Model Predictive Control: Nagabadi et al., 2017
» Ours—Model closed-loop behavior over entire trajectories.
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Video results online: https://sites.google.com /view/sectar/home
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