Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings John D. Co-Reyes^{* 1}, YuXuan Liu^{* 1}, Abhishek Gupta^{* 1}, Benjamin Eysenbach ², Pieter Abbeel ¹, Sergey Levine ¹

Example: Grocery shopping

$$z(z \mid \tau) \parallel p(z)) + H(p_0 \mid (\tau \mid z))$$

* equal contribution

Experimental Results

Tasks:

- goals. Tests reasoning over continuous action space.
- with objects.
- higher-level navigation strategy.

Block Manipulation

2-D Navigation: Navigate a specific sequence of waypoints with reward every 3rd waypoint. Long horizon task with sparse rewards. ► Wheeled Locomotion: Navigate a wheeled robot through a series of

Block Manipulation: Pick up blocks and move them to the correct goal locations. Model must explore and learn useful interaction skills

Swimmer Navigation: Navigate through a series of waypoints with a 3-link robotic swimmer. Must acquire low-level swimming gait and

Video results online: https://sites.google.com/view/sectar/home