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Agent

• One form of hierarchy: low-level skills 

• Reasoning in terms of walking instead of torques or joint angles 

• High-level abstraction enables temporally extended planning 



Challenges in Hierarchical RL

• Representing lower-level skills



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017

Options:



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills

Options:



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills 



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons 

• Model Predictive Control: Nagabandi et al., 2017



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons 

• Model Predictive Control: Nagabandi et al., 2017                 
→ modeling closed-loop behavior over trajectories



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons 

• Model Predictive Control: Nagabandi et al., 2017                 
→ modeling closed-loop behavior over trajectories 

• Delayed and sparse rewards



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
et al., 2017 → continuous representation of skills 

• Learning lower-level skills  

• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons 

• Model Predictive Control: Nagabandi et al., 2017                  
→ modeling closed-loop behavior over trajectories 

• Delayed and sparse rewards 

• Exploration: Houthooft et al., 2016; Bellemare et al., 2016; 
Fu et al., 2017



Challenges in Hierarchical RL

• Representing lower-level skills 

• Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox 
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• Hand specified objectives: Florensa et al., 2017; Sutton et al., 
1999 → generic objectives 

• High-level planning over long time-horizons 

• Model Predictive Control: Nagabandi et al., 2017                  
→ modeling closed-loop behavior over trajectories 

• Delayed and sparse rewards 

• Exploration: Houthooft et al., 2016; Bellemare et al., 2016; 
Fu et al., 2017 → maximum entropy exploration
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Method Overview

• Continuous representation of lower-level skills 

• Acquire diverse skills using maximum entropy exploration 

• High-level planning in space of learned skills with model predictive 
control

Representation learning Entropy-based 
exploration

MPC in learned space
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SeCTAr: Self-consistent Trajectory Autoencoder

• Representation learning with variational inference 

• Encourage state and policy decoders to be consistent 

• Train state decoder with supervised learning and policy decoder with RL 

• State decoder is a model of the policy decoder behavior
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Maximum Entropy Exploration

• Use SeCTAr to estimate density 

• Encourage exploration of trajectories that are unlikely (low density)



How do we use SeCTAr to solve 
hierarchical tasks?
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Advantages of Sectar

• Continuous representation of skills 

• Maximum entropy exploration to collect data and learn diverse skills 

• Planning in space of low-level skills enables long-horizon reasoning 

• Sample efficiency of model-based method

Representation learning Entropy-based 
exploration

MPC in learned space



Wheeled Navigation

• Sparse reward of +1 given after reaching every 3 goals

(2x actual speed)



Wheeled Locomotion

TRPO (Schulman et al., 2015)SeCTAr VIME (Houthooft et al., 2016) MPC (Nagabandi et al., 2017)

(2x actual speed)



Object Manipulation

• Sparse reward of +1 given when block reaches goal in correct order



Object Manipulation

TRPO (Schulman et al., 2015)SeCTAr VIME (Houthooft et al., 2016) MPC (Nagabandi et al., 2017) A3C (Mnih et al., 2016)

FeUdal (Vezhnevets et al., 2017)Option-critic (Baconet al., 2017)
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