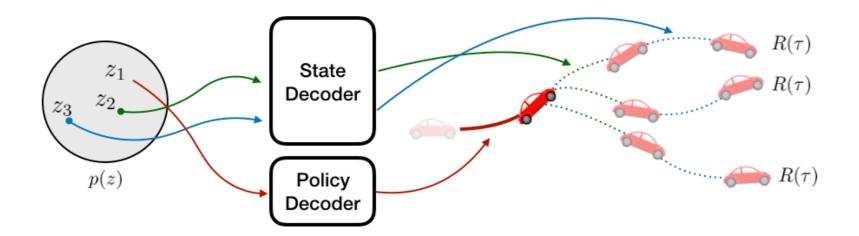
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings

John D. Co-Reyes^{*1}, YuXuan (Andrew) Liu^{*1}, Abhishek Gupta^{*1}, Benjamin Eysenbach², Pieter Abbeel¹, Sergey Levine¹



¹University of California, Berkeley ²Google Brain

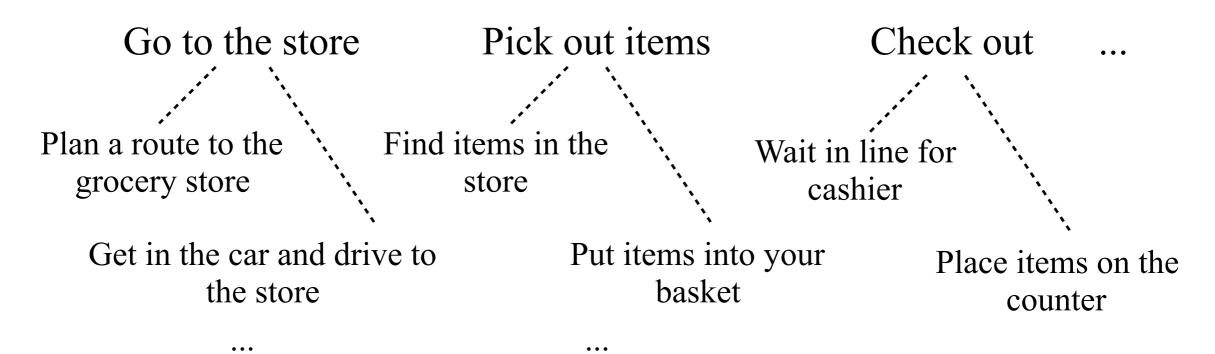
Grocery shopping

Grocery shopping

Go to the store Pick out items

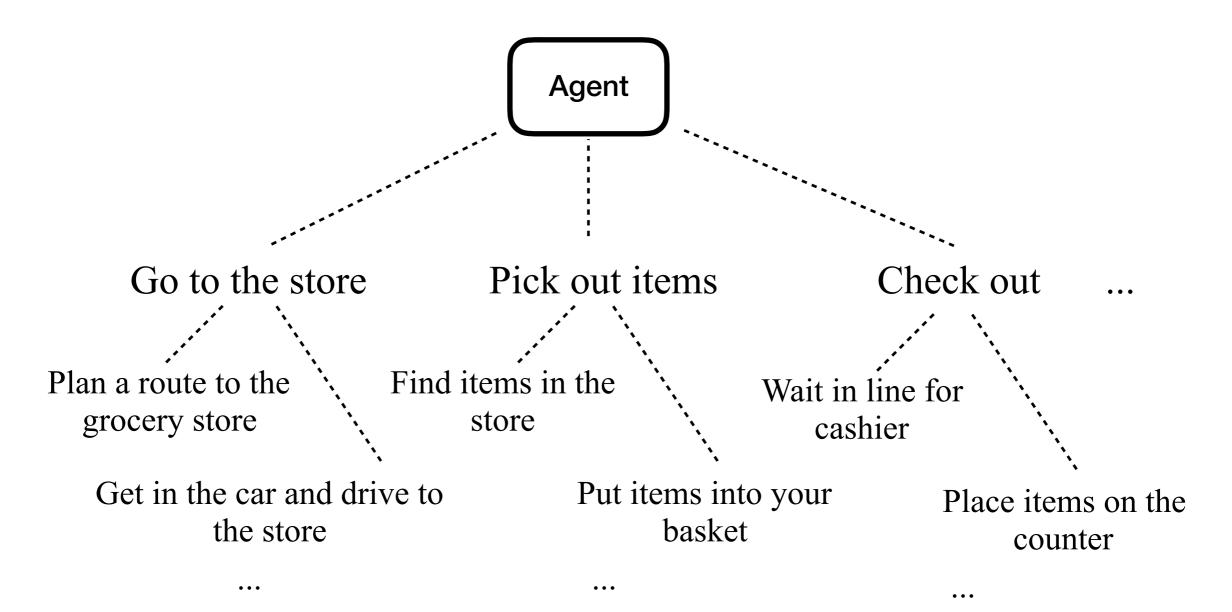
Check out

Grocery shopping



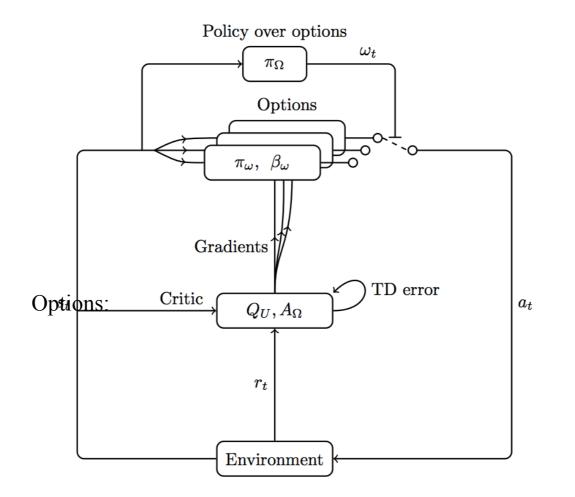
Hierarchical RL

- One form of hierarchy: low-level skills
- Reasoning in terms of walking instead of torques or joint angles
- High-level abstraction enables temporally extended planning

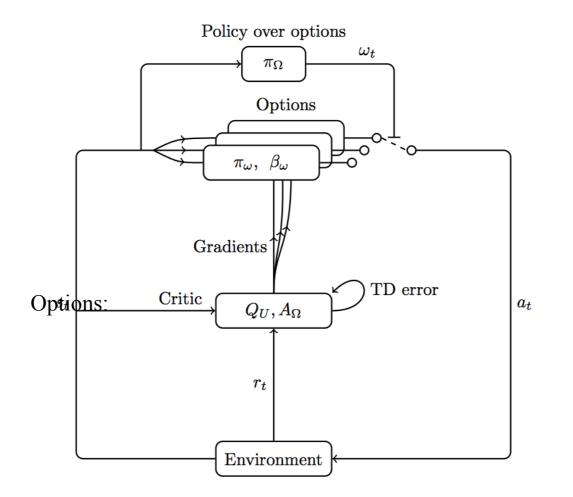


• Representing lower-level skills

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017

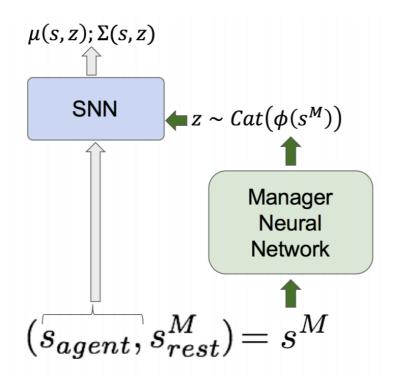


- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

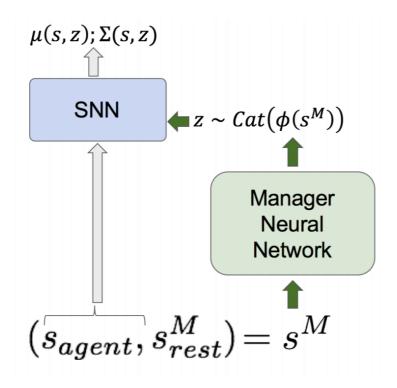


- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999



- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives



- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017

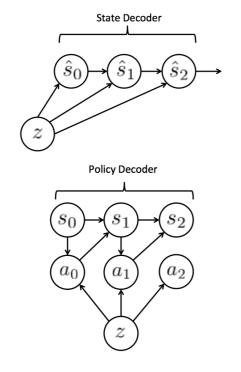
- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017
 → modeling closed-loop behavior over trajectories

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017
 → modeling closed-loop behavior over trajectories
- Delayed and sparse rewards

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017
 → modeling closed-loop behavior over trajectories
- Delayed and sparse rewards
 - Exploration: Houthooft et al., 2016; Bellemare et al., 2016; Fu et al., 2017

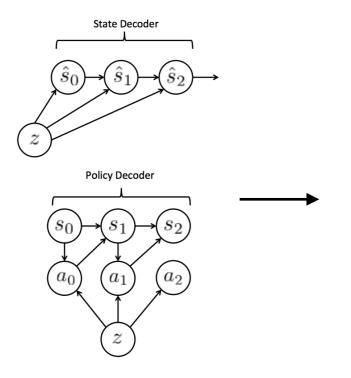
- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives
- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017
 → modeling closed-loop behavior over trajectories
- Delayed and sparse rewards
 - Exploration: Houthooft et al., 2016; Bellemare et al., 2016; Fu et al., 2017 → maximum entropy exploration

• Continuous representation of lower-level skills



Representation learning

- Continuous representation of lower-level skills
- Acquire diverse skills using maximum entropy exploration

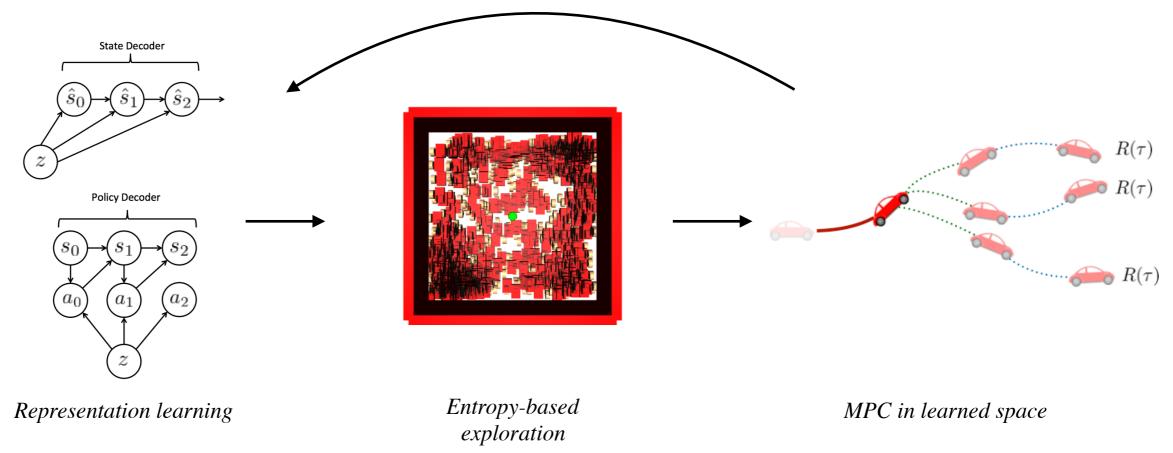




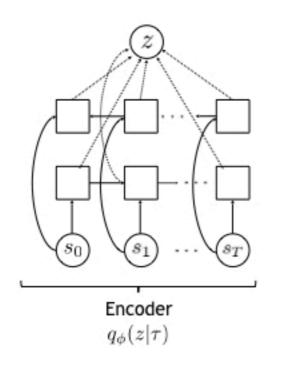
Representation learning

Entropy-based exploration

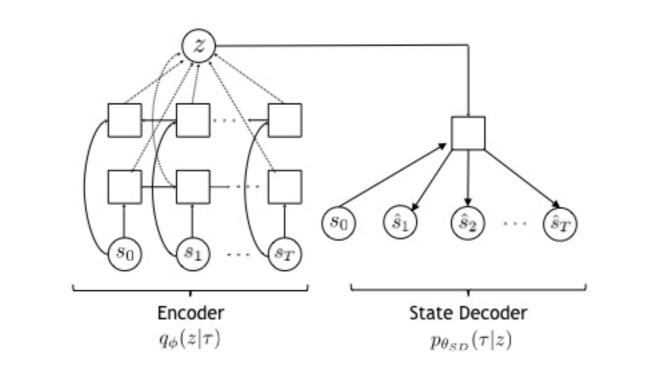
- Continuous representation of lower-level skills
- Acquire diverse skills using maximum entropy exploration
- High-level planning in space of learned skills with model predictive control



How do we represent low-level skills?

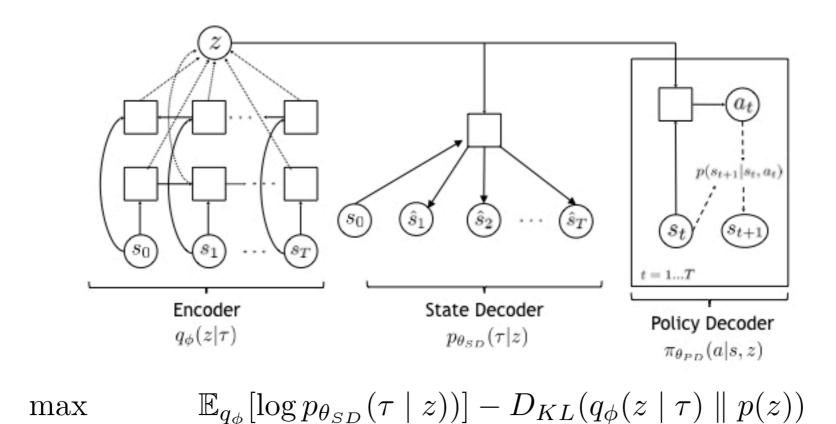


• Representation learning with variational inference

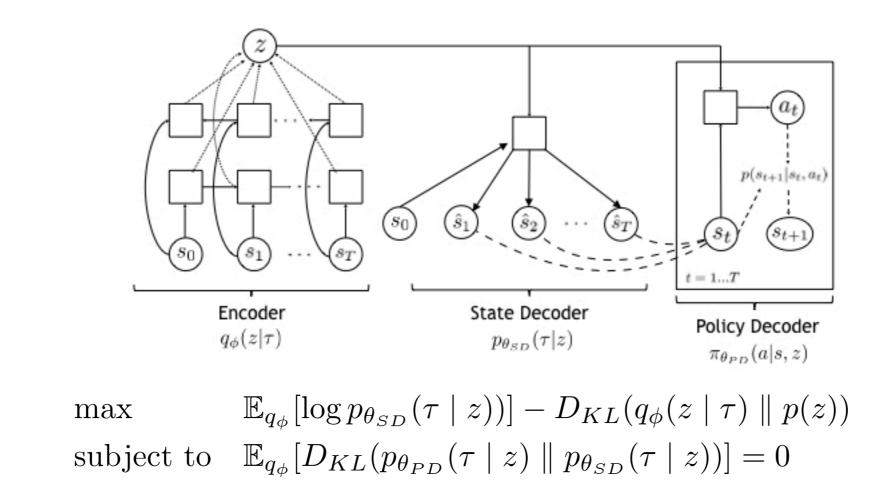


 $\max \qquad \mathbb{E}_{q_{\phi}}[\log p_{\theta_{SD}}(\tau \mid z))] - D_{KL}(q_{\phi}(z \mid \tau) \parallel p(z))$

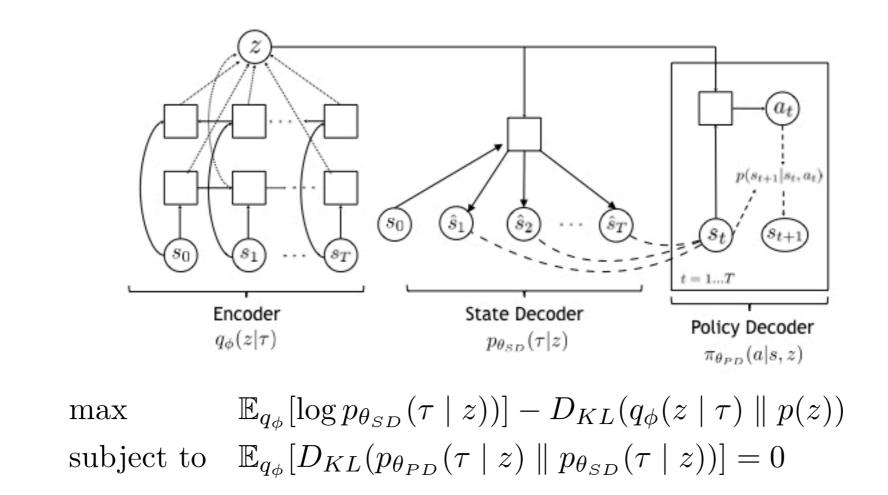
• Representation learning with variational inference



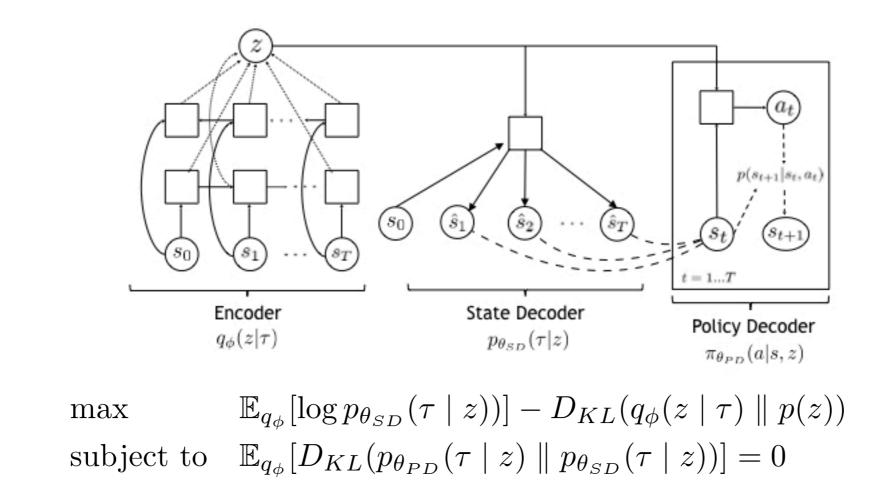
• Representation learning with variational inference



- Representation learning with variational inference
- Encourage state and policy decoders to be consistent



- Representation learning with variational inference
- Encourage state and policy decoders to be consistent
- Train state decoder with supervised learning and policy decoder with RL



- Representation learning with variational inference
- Encourage state and policy decoders to be consistent
- Train state decoder with supervised learning and policy decoder with RL
- State decoder is a model of the policy decoder behavior

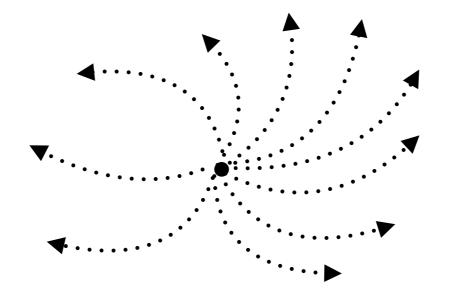
How do we learn a diverse set of skills?

Maximum Entropy Exploration

 $\max_{\theta} \mathcal{H}(p_{\theta}(\tau)) = -\mathbb{E}_{p_{\theta}(\tau)}[\log p_{\theta}(\tau)]$

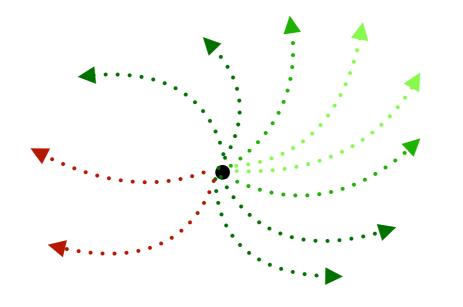
Maximum Entropy Exploration

$$\max_{ heta} \mathcal{H}(p_{ heta}(au)) = -\mathbb{E}_{p_{ heta}(au)}[\log p_{ heta}(au)]$$



Maximum Entropy Exploration

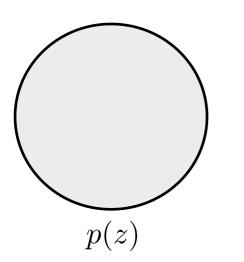
$$\max_{\theta} \mathcal{H}(p_{\theta}(\tau)) = -\mathbb{E}_{p_{\theta}(\tau)}[\log p_{\theta}(\tau)]$$



- Use SeCTAr to estimate density
- Encourage exploration of trajectories that are unlikely (low density)

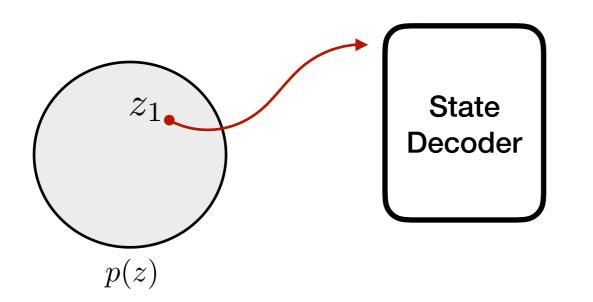
How do we use SeCTAr to solve hierarchical tasks?

Model Predictive Control in Latent Space



• Simple shooting method to select best sequence of latents

Model Predictive Control in Latent Space

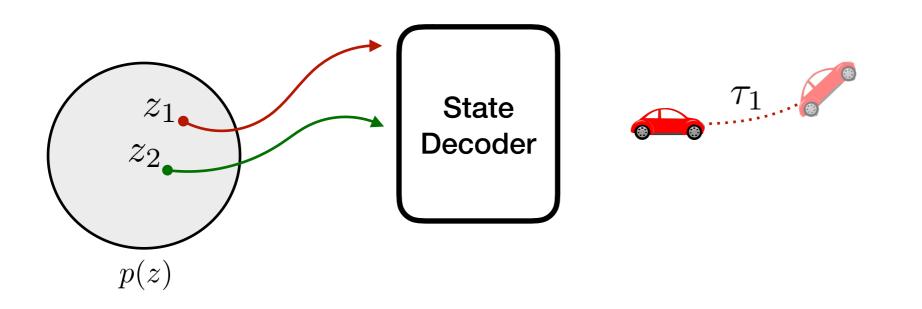


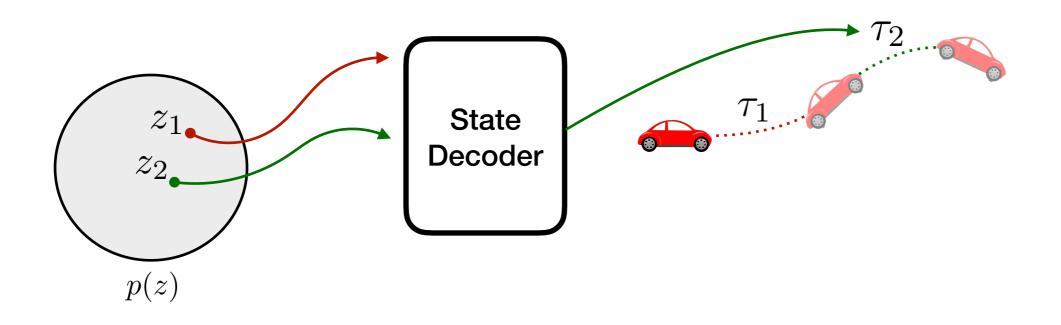
• Simple shooting method to select best sequence of latents

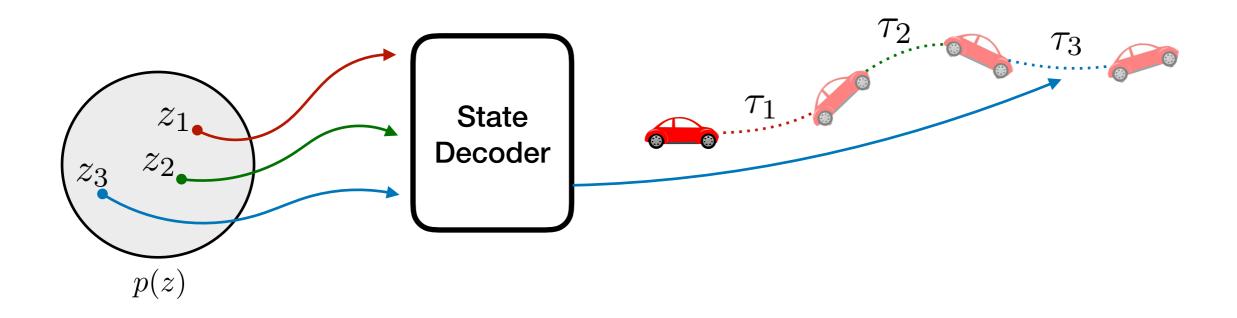
Model Predictive Control in Latent Space

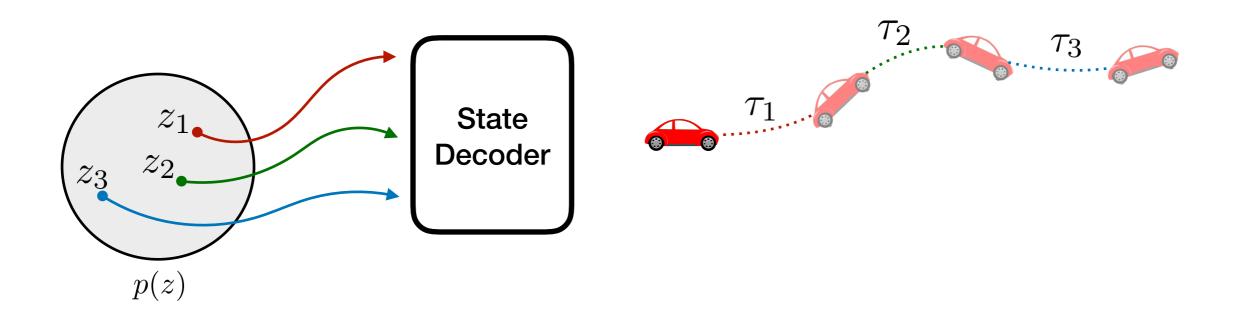


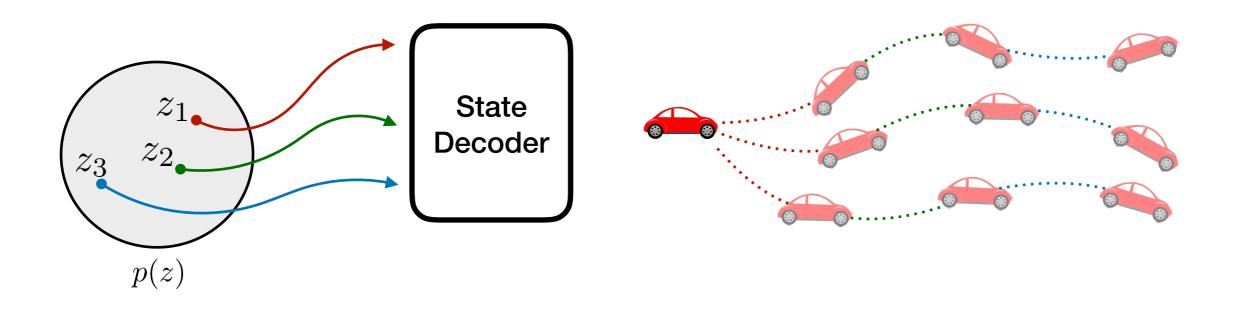
• Simple shooting method to select best sequence of latents



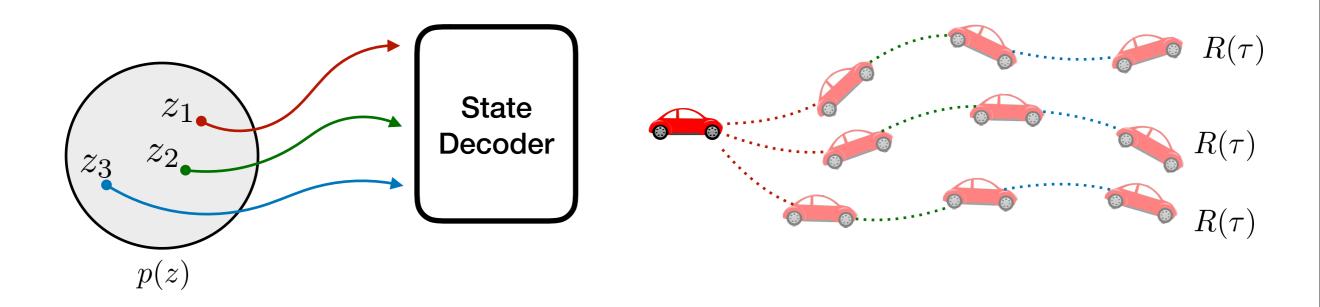




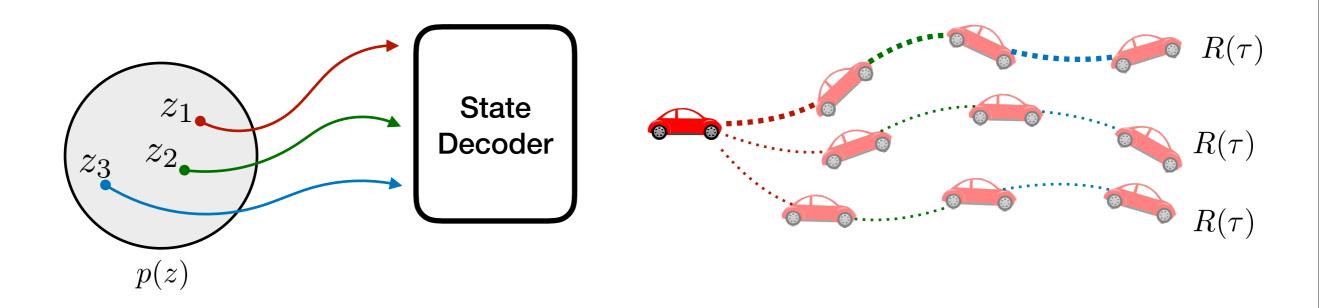




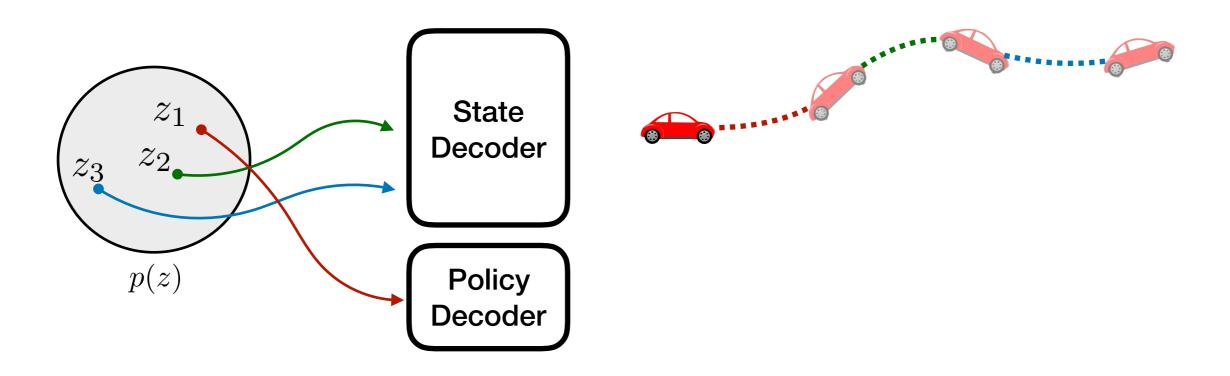
- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior



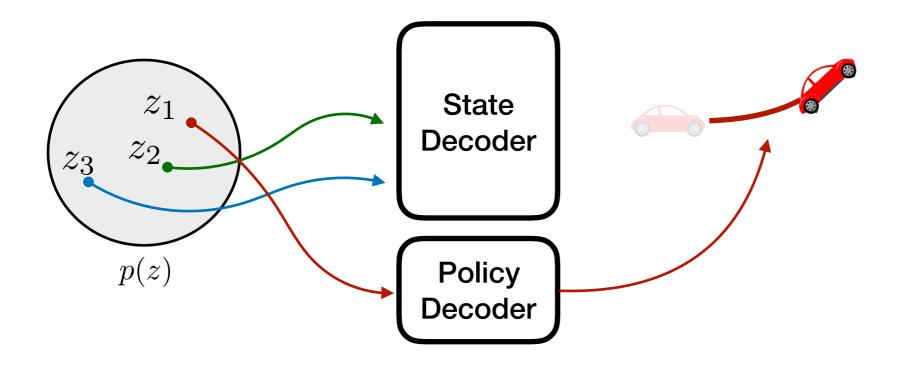
- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents



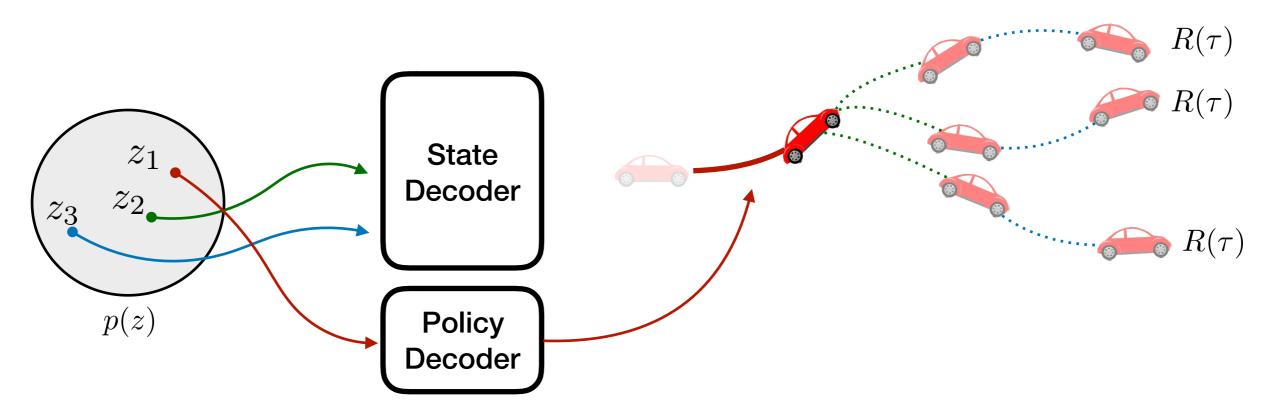
- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents



- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder



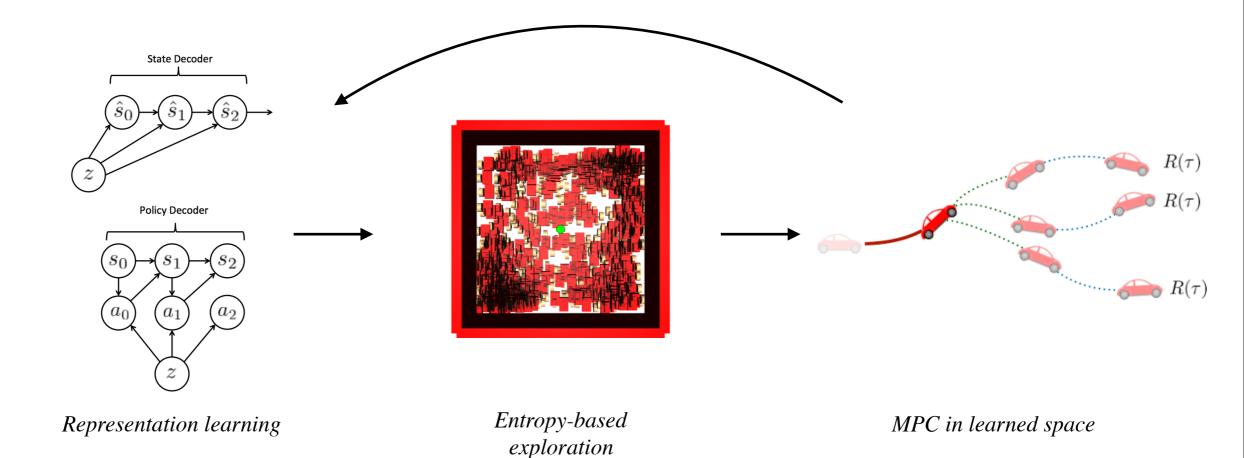
- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder



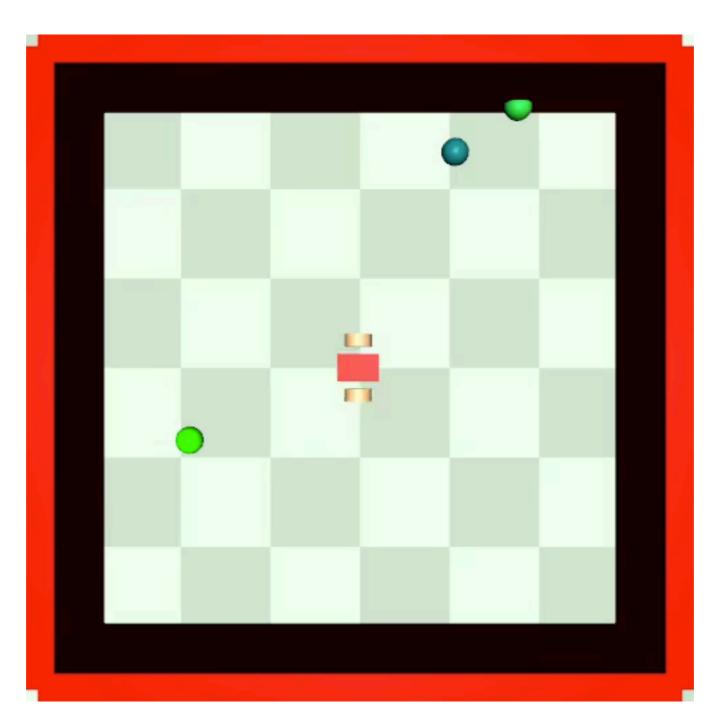
- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder

Advantages of Sectar

- Continuous representation of skills
- Maximum entropy exploration to collect data and learn diverse skills
- Planning in space of low-level skills enables long-horizon reasoning
- Sample efficiency of model-based method



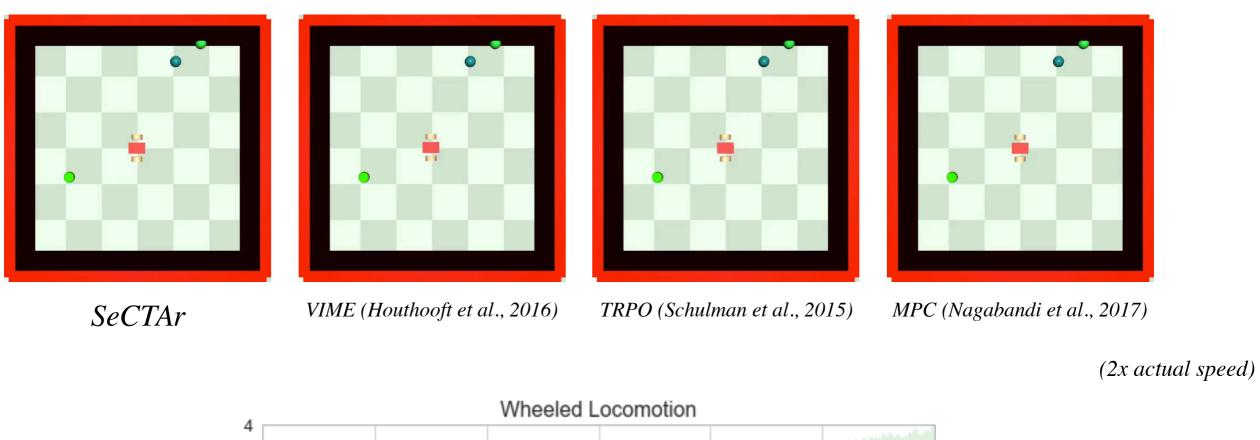
Wheeled Navigation

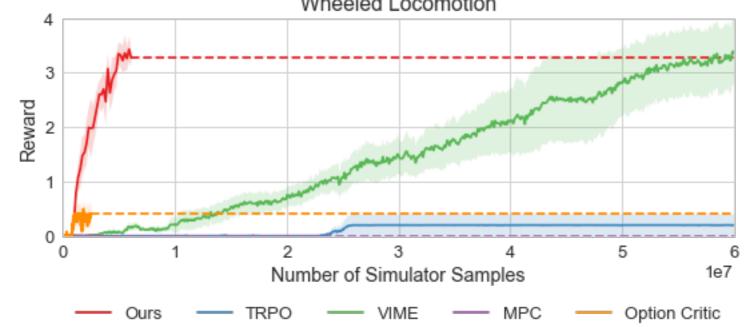


⁽²x actual speed)

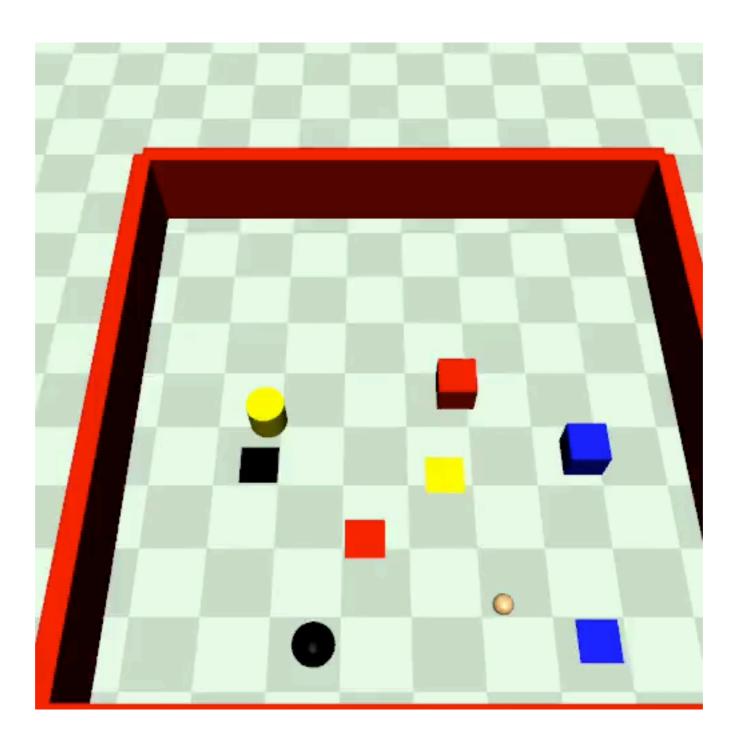
• Sparse reward of +1 given after reaching every 3 goals

Wheeled Locomotion



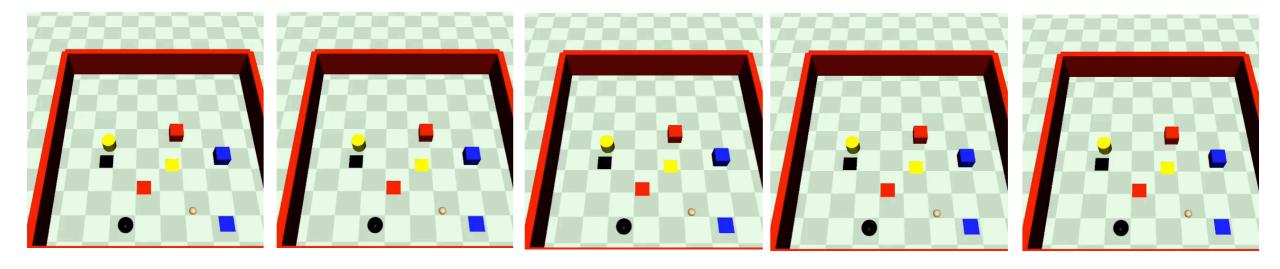


Object Manipulation



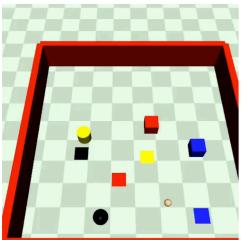
• Sparse reward of +1 given when block reaches goal in correct order

Object Manipulation



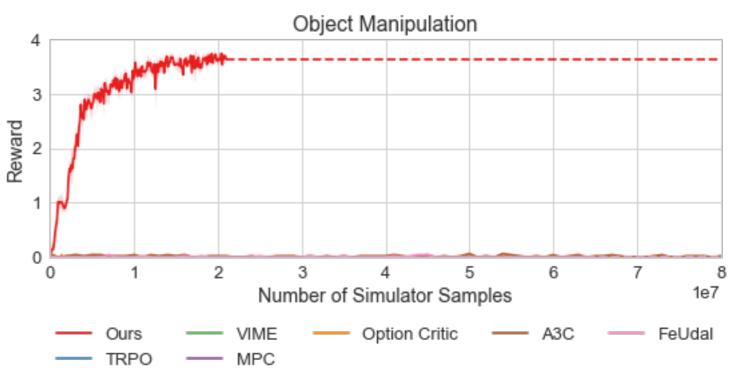
SeCTAr

VIME (Houthooft et al., 2016) MPC (Nagabandi et al., 2017) A3C (Mnih et al., 2016) TRPO (Schulman et al., 2015)

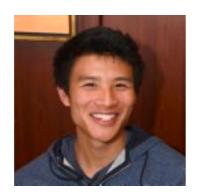


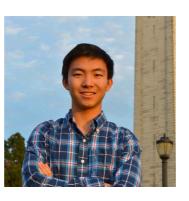


Option-critic (Baconet al., 2017) FeUdal (Vezhnevets et al., 2017)



Thank you





John D. Co-Reyes^{*1} YuXuan Liu^{*1}

Abhishek Gupta*1

Benjamin Eysenbach²

Pieter Abbeel¹

Sergey Levine¹

https://github.com/wyndwarrior/Sectar

For more details and experiments: Wed Jul 11th 6:15 - 9:00 PM @ Hall B #15

¹University of California, Berkeley ²Google Brain

